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Abstract
We study a probabilistic cellular automaton to describe two population
biology problems: the threshold of species coexistence in a predator–prey
system and the spreading of an epidemic in a population. By carrying out
mean-field approximations and numerical simulations we obtain the phase
boundaries (thresholds) related to the transition between an active state, where
prey and predators present a stable coexistence, and a prey absorbing state.
The numerical estimates for the critical exponents show that the transition
belongs to the directed percolation universality class. In the limit where the
cellular automaton maps into a model for the spreading of an epidemic with
immunization we observe a crossover from directed percolation class to the
dynamic percolation class. Patterns of growing clusters related to species
coexistence and spreading of epidemic are shown and discussed.

PACS numbers: 05.70.Ln, 87.23.Cc, 64.60.Ht

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 1958, Huffaker [1], in a pioneering experiment, was able to maintain in the laboratory
a population of prey and predators coexisting and presenting self-sustained coupled time
oscillations. He has verified that persistence of species was only possible in a large and
heterogeneous space. Since then different models have been proposed to explain the role of
space in determining the species coexistence [2–13]. A common feature of these models is
that they are based either on interacting particle systems [14], also called stochastic lattice
models [4], or on probabilistic cellular automata. These descriptions are appropriate and
relevant when considering predator–prey systems which are under conditions of very low
species population densities and/or when their habitat is spatially heterogeneous [2].
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In the present paper we study a stochastic model that takes into account the spatial structure
explicitly to describe two population biology issues: the threshold of species coexistence in a
predator–prey system and the spreading of an infectious disease in a population. The dynamics
associated with the systems is a Markovian discrete time process, namely a probabilistic
cellular automaton. The individuals of each population are treated as discrete and they are
supposed to occupy the sites of a two-dimensional lattice. Birth and death of individuals are
included in the stochastic rules which take into account the limited resources for proliferation
and local interactions. We consider that one prey individual can be born in an empty site
if there are prey in the neighbourhood of the empty site; predators eat prey if they are
in the first neighbourhood of a site occupied by prey; predators die spontaneously. Each
process occurs according to a probability and the proliferation of prey and the predation are
mimicked by processes which are similar to the catalytic creation process in the contact model
[14].

By performing a simple mean-field analysis of this automaton, we derive time evolution
equations for the densities; these can be compared to those provided by an unstructured
metapopulation dynamics approach equations [15, 16] for the fractions of empty patches,
patches colonized by prey and patches colonized by predators. Thus, at a simple mean-field
level, the time evolution equations for the densities of prey and predators can be mapped
into an extended version of Lotka–Volterra equations [17, 18], which contains a logistic term
[15]. The simple mean-field approach shows that the system evolves in time and eventually
reaches stationary states that can be either active states, where prey and predators have a stable
coexistence, or absorbing states. There is thus a transition from the stable coexistence state to
a state where predators have been extinct.

To analyse the relation between the spatial distribution of species and persistence and
to find the thresholds of coexistence we carry out numerical simulations. A particularly
useful numerical method for models with absorbing states, is the so-called time-dependent
simulation (or spreading analysis) [19–33]. This method allows us to obtain the phase
boundaries together with the critical exponents. The scaling analysis of the time-dependent
simulation yields a set of dynamic critical exponents and thus the possibility of classification
of models in universality classes. Here, we have found that the automaton exhibits a line of
continuous phase transition which belongs to the universality class of directed percolation, for
all sets of parameters such that the prey birth probability is different from zero. When this
probability vanishes there occurs a crossover to the universality class of dynamic isotropic
percolation.

The automaton, in the above-mentioned limit, can be mapped into a model for the
spreading of an epidemic with immunization, a general epidemic process [15, 20, 21, 34, 35].
This mapping can be accomplished by making the correspondence: prey and predators
individuals with susceptible and infected individuals, respectively. This is in accordance
with a modelling of infectious diseases by considering slight variations of the Lotka–Volterra
predator–prey equations [36]. The spreading of an epidemic can also be interpreted as a
limiting case of the forest fire with immunization automaton introduced by Drossel and
Schwabl [37]. Our automaton presents similarities with the Drossel and Schwabl automaton,
which will be exploited later.

This paper is organized as follows. In section 2 we describe the predator–prey cellular
automaton, a mean-field approach and time-dependent simulation. Critical properties and
pictures of growing clusters generated by the simulations are shown in the same section. In
section 3 we analyse the spreading of an epidemics with immunization. We briefly summarize
our results in section 4.
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2. Predator–prey probabilistic cellular automaton

2.1. The model

We assume that each individual of each species population can reside on the sites of a regular
square lattice which represents their habitat. A site in the lattice can be in one of three states:
occupied by a prey individual (X); occupied by a predator individual (Y) or empty (Z). The
predator–prey probabilistic cellular automaton comprehends the following processes:

Z + X → 2X, (1)

X + Y → 2Y, (2)

and

Y → Z. (3)

The transitions between states obey probabilistic rules which depend on the state of the given
site and on the states of its four nearest neighbours at the north, east, south and west (which
defines the neighbourhood). The update is synchronous and the rules are

(i) a prey individual can be born in an empty site with a probability a/4 times the number of
sites occupied by prey in the neighbourhood, process (1);

(ii) a predator individual can be born in a site occupied by a prey if there are predators in its
neighbourhood. Prey disappear instantaneously and give place to a new predator. The
probability of this process is b/4 times the number of sites occupied by predators in the
neighbourhood, process (2);

(iii) the death of predators is spontaneous: a site occupied by a predator can be evacuated with
a probability c. This process reintegrates to the system the resources for prey proliferation,
process (3).

The model has three parameters a, b and c, with 0 � a � 1, 0 � b � 1 and 0 � c � 1.
However, we assume that [4, 7] a + b + c = 1, thus just two parameters are independent. We
consider the parametrization: a = (1 − c)/2 − p and b = (1 − c)/2 + p. The parameter
p is such that −1/2 � p � 1/2 and parameter c denotes the death probability of predators,
0 � c � 1. This parametrization allows us to analyse the model in a triangular phase diagram
p − c, as shown in figure 1.

The present automaton exhibits similarities with the forest fire automaton with immunity
introduced by Drossel and Schwabl [37]. Let us call ηi a dynamic variable which takes the
values ηi = 0, 1 or 2 according whether site i is empty, occupied by one prey individual
(a green tree in the forest-fire model) or by one predator individual (a burning tree in the
forest-fire model). The transitions between states in both models are cyclic 0 → 1 → 2 → 0.
However, in the present model the transition 0 → 1 is catalytic whereas in the forest-fire model
it is spontaneous. The transition 1 → 2 is catalytic in both models and the transition 2 → 0
is spontaneous in both models. The processes 0 → 1 and 1 → 2 occur with probabilities a
and b, respectively, for the predator–prey automaton and p and 1 − g (g is called immunity),
respectively, for the forest-fire model. The process 2 → 0 occurs with probability c in the
predator–prey model and with probability 1 in the forest-fire model.

2.2. Dynamic mean-field approximation

The simplest theoretical description of the predator–prey probabilistic cellular automaton
is given by the one-site dynamic mean-field approximation (also called simple mean-field
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Figure 1. Phase diagram in the plane p − c, showing regions corresponding to the prey absorbing
phase and the active phase. Phases are separated by a transition line obtained from mean-field
approximation (dotted-dashed line) and time-dependent simulations (full line).

approximation) [38] where the probability of a cluster of sites is written as the product of the
probabilities of each site. Under this approach we can derive the following two-dimensional
map:

x�+1 = ax�(1 − x� − y�) − bx�y� + x�, (4)

yl+1 = bx�y� + (1 − c)y�, (5)

where x� and y� are the mean number of prey and predator individuals per site at time �,
respectively. We remark that the density of empty sites z� is given by

z� = 1 − x� − y�. (6)

Equations (4) and (5) differ in an important feature from the Lotka–Volterra model, namely,
the presence of the logistic term z� = 1−x� −y� which means to say that amount of resources
for prey proliferation is limited.

For a �= 0, the stationary solutions of equations (4) and (5) are

(x1, y1) = (0, 0), (x2, y2) = (1, 0) (7)

and

(x3, y3) =
(

c

b
,

1 − c/b

1 + b/a

)
. (8)

The two first solutions are trivial and correspond respectively to the absorbing state where both
species have been extinct and the absorbing state where the space is completely full of prey.
The third solution depends on the parameters a, b and c and is an active solution. Performing
a linear analysis of stability we find that: the solution (x1, y1) is unstable for any set of the
parameters; the solution (x2, y2), which corresponds to the prey absorbing state, is stable in
the region b � c; and the active solution (x3, y3), where there is coexistence of species, is
stable for b > c. So that, as shown in figure 1, a continuous transition line, described by b = c

or c = (1 + 2p)/3, crosses the entire phase diagram and separates the absorbing prey phase
and the active phase, characterized by nonzero densities of prey and predators.
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Figure 2. Log–log plot of the mean number of predators 〈N〉 (left panel), the survival probability
P (middle panel) and the mean-square distance of spreading of predators 〈R2〉 (right panel), as a
function of the time t, for p = 0. Each figure shows the behaviour of these quantities for different
values of c. From top to bottom, in each figure, c is varied from 0.18875 until c = 0.19275 in
different steps.

We may conclude that the simplest mean-field approximation for the predator–prey
probabilistic cellular automaton is able to show, under a robust set of control parameters,
that prey and predators can coexist without extinction. It is worth noticing again that the
model, in this simple approximation, has an analogy with an unstructured metapopulation
model with empty patches, patches colonized by prey and patches colonized by predators
[15, 16].

2.3. Time-dependent simulation

To carry out a time-dependent simulation analysis for the predator–prey cellular automaton
we follow the time evolution of states very close to the prey absorbing state. We depart
from an initial condition (t = 0) with a single predator at the origin of a lattice covered by
prey. Once the system is placed in the initial condition we apply the local rules (i), (ii) and
(iii), described in section 2.1, and let it evolves in time. We have considered 10 000 samples
(independent runs) all starting with this same condition. For each fixed value of p we vary c
near its transition value. The simulations were performed in systems sufficiently large so that
predators do not reach the borders of the lattice.

We have investigated the behaviour of the following quantities: the survival probability
of predators P, that is, the probability that predators have not been extinct until time t; the
mean number of predators 〈N〉 at time t, whose average is calculated over all the samples,
including those where predators have been extinct before time t; and the average mean-square
distance of spreading of predators from the origin, 〈R2〉. This average is calculated by taking
into account only the samples that survived until time t. According to the scaling laws for
time-dependent simulations [19], for large values of t, we expect, at the critical point, the
following power laws,

〈N〉 ∼ tη, P ∼ t−δ, 〈R2〉 ∼ t z, (9)

where η, δ and z are the critical exponents.
As can be seen in figure 2, the log–log plot of the mean number of predators, as well

as of the survival probability, show very well-defined critical and off-critical asymptotic
behaviours. Therefore, it is possible to obtain the phase boundaries together with the
critical exponents. From figure 2 we get the following estimates for the critical exponents
η = 0.230(9), δ = 0.451(6), and z = 1.134(4), for p = 0 (that is, for a = b). The same
values of exponents, within the statistical errors, were found for distinct values of p along
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Figure 3. Logarithmic derivative D of 〈N〉 with respect to c. For p = 0 and considering values of
c slightly above and below the critical value.

the critical line c(p) (excluding the critical point for which a = 0). These values of the
dynamic critical exponents are consistent with those of the directed percolation class in (2 + 1)

dimensions [29]. This dynamic critical behaviour has been obtained for a diversity of models
with finite number of asymmetric absorbing states [26–31, 41, 42].

The critical exponent associated with the time correlation length ν‖ can be obtained from
the time-dependent simulations. Here, the estimation was accomplished by studying the time
behaviour of the derivative D of the mean value of predators 〈N〉. From the scaling laws it
can be shown that [23],

D = d log〈N〉
d log c

� t1/ν‖ , (10)

at the critical value of c. In a simulation run the derivative was calculated considering finite
differences; this procedure requires data for values of c slightly above and below the critical
value. The behaviour of D, for p = 0, is shown in figure 3, from which we obtained the
exponent ν‖ = 1.29(10), in agreement with the estimated value ν‖ = 1.295(6) [29] for the
directed percolation in (2 + 1) dimensions.

In figure 1 it is shown that the transition line c(p) is determined from our time-dependent
simulations. It starts from the left corner of the triangle in the p − c diagram and ends on the
opposite side. The densities of prey, predators and empty sites change continuously at c(p).
For a �= 0, the transition is from the active state to the prey absorbing state. In the limiting case
corresponding to a = 0, the point where c(p) meets the right side of triangle of figure 1, the
transition is from one of the infinitely many absorbing states to the prey absorbing state. For
sets of parameters such that a approaches zero, the critical behaviour of the model suggests a
crossover to another universality class. These features will be explored in section 3.

2.4. Growing clusters of predator–prey coexistence

The pictures shown in figures 4–6 are related to configurations generated by simulations of the
predator–prey cellular automaton departing from the initial condition with one predator at the
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Figure 4. Two snapshots of the predator–prey automaton, generated from a single predator at the
origin (centre) of a lattice covered by prey, for p = −0.45 and c = 0.01 (left panel, taken at
t = 10000) and c = 0.0227 (right panel, taken at t = 65000). The white points represent sites
occupied by prey, the black points (red points in the electronic version) by predators and the grey
points are empty sites.

Figure 5. The same of figure 4, for p = −0.3 and c = 0.0075 (left panel, taken at t = 1750), and
c = 0.0867 (right panel, taken after t = 20000).

Figure 6. The same of figure 4, for p = 0.3 and c = 0.06 (left panel, taken at t = 500), and
c = 0.2257 (right panel, taken at t = 3000).

origin and the lattice full of prey. It can be seen in figure 4 a configuration in the supercritical
regime (left panel) and an almost critical configuration (right panel) for a set of parameters
which corresponds to b � a and c � a (left down corner of the triangular phase diagram of
figure 1). In this case, predators stay in the lattice for a long period of time, and when one of
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Figure 7. Two snapshots of the forest-fire model with immune trees, generated from a single
burning tree at the origin (centre) of a lattice covered by green trees, for p = 0.05 and g = 0.3 (left
panel, taken at t = 200) and g = 0.45 (right panel, taken at t = 300). The white points represent
sites occupied by green tree, the black points (red points in the electronic version) by a burning
tree and the grey points are empty sites.

them dies it gives place to an empty site that will be almost immediately occupied by a prey
individual. Consequently, just a few number of empty sites is present in the steady state and
also in the growing clusters. This behaviour suggests that the present three state process, in
the limit b → 0, c → 0 with b/c finite, can be replaced by a two state process, similar to the
contact process, involving predators and prey.

The growing cluster of the left panel of figure 5 shows a pattern formation related to an
active region where prey and predators coexist and can exhibit local time coupled oscillations.
With a nonzero probability, the dynamics will survive forever with the densities of each
species different from zero but less than 1. Our numerical results indicate that this cluster, as
well as the supercritical growing clusters of figures 4 and 6 (left panels), assumes after some
characteristic time an asymptotic shape. At the critical point, this characteristic time diverges.

It is remarkable that the supercritical cluster of figure 6 corresponds to a configuration
where the populations of prey and predators, under conditions of low densities, are grouped
into small clusters of a unique species that are isolated from each other, and coexist without
extinction in a highly heterogeneous space. In this respect, this species coexistence can be
compared to the Huffaker’s experiment, commented in section 1. The coexistence for the set
of parameters of figure 6 is associated with self-sustained coupled time oscillations of prey
and predators populations. These are local oscillations which have been detected by numerical
simulations performed in finite size lattices [39].

Typical clusters at criticality are shown in the right panels of figures 4–6. According to
our results of section 2.3, these configurations must be related with transitions belonging to
the universality class of directed percolation. They present a shape of a fractal nature. We
note that the critical cluster of figure 6 (right panel), which corresponds to a set of parameters
inside the crossover region, presents, in contrast with those of figures 4 and 5 (right panels),
noticeable agglomerations of empty sites. A qualitative similar behaviour of critical clusters
was obtained by Dammer and Hinrichsen [35] for an epidemic spreading model which also
presents a crossover from the directed percolation critical behaviour to the dynamic percolation
critical behaviour.

We remark that the clusters present some characteristics in common with the clusters
generated by the forest-fire model with immunization [37]. We have performed time-dependent
simulations for this model, defined in a regular square lattice, considering the tree growth
parameter p = 0.05 and immunity parameter g = 0.3 and g = 0.45. Snapshots are shown in
figure 7 which should be compared with those of the predator–prey model shown in figure 5
if we interpret predators as burning trees and prey as green trees.
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We finally should mention that simulations in finite systems, for some sets of parameters
of the predator–prey automaton, may spuriously drive the system to be trapped either in an
absorbing state where both species become extinct or in a prey absorbing state. These events
occur especially for small values of c and/or in the crossover region; as explained by de
Carvalho and Tomé [39], one method to determine whether in the stationary regime this state
is attained, or not, is to avoid the extinction of species in the transient regime.

3. Spreading of an epidemic

3.1. The model

For a = 0 the predator–prey probabilistic cellular automaton can be interpreted as a model for
the propagation of an epidemic with immunization. It mimics the spreading of an epidemic
in a population composed of susceptible individuals (X) that get infected (Y) by contact
with infected individuals; once infected the individuals can recover, and become immune (Z)
spontaneously. The process of infection can be represented by the reaction

X + Y → 2Y, (11)

and the recovery process, which includes immunization, by the reaction

Y → Z. (12)

These are the basic processes which are taken into account in the modelling of the spreading
of an epidemics with immunization [15, 20, 21, 31, 34, 35]. The present model is defined on a
regular square lattice where each site can be in the following states: occupied by a susceptible,
an infected or an immune individual. It comprehends the following stochastic rules.

(A) The infection can occur when a susceptible individual, which occupies a given site, has
at least one site occupied by an infected individual in its neighbourhood, reaction (11).
This process occurs with probability b/4 times the number of infected individuals in the
neighbouring sites.

(B) The recovering process can occur spontaneously with probability c when a site is occupied
by an infected individual, reaction (12). The condition b + c = 1 is obeyed, with b being
the infection probability and c the recovery probability. This model can exhibit infinitely
many absorbing states and presents a continuous transition belonging to the dynamic
percolation universality class, as we show in section 3.3.

3.2. Mean-field approximation

The simplest mean-field approach for the epidemic spreading process is given from
equations (4) and (5), with a = 0. So that

x�+1 = −bx�y� + x�, (13)

yl+1 = bx�y� + (1 − c)y�, (14)

where x� and y� are the densities of susceptible and infected individuals, respectively. The
density of immune individuals is given by z� = 1 − x� − y�. The stationary solution of this set
of independent equations is such that y = 0 so that x + z = 1. To find the asymptotic values
of x� for large values of � we write down the following equation:

y�+1 − y�

x�+1 − x�

= −1 +
c

bx�

, (15)
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Figure 8. Density of immune individuals ρ0 as a function of c, for a = 0, from mean-field
approximation.

obtained from equations (13) and (14). For large values of �, the left-hand side approaches
the derivative dy/dx so that

dy

dx
= −1 +

c

bx
, (16)

whose solution is

y = −x +
c

b
ln x + 1. (17)

The integration constant was found by considering that initially the individuals are all
susceptible. In the stationary state y = 0 so that the asymptotic value of x is the solution of

−x +
c

b
ln x + 1 = 0. (18)

This equation was solved numerically and the result for ρ0 = z = 1 − x is plotted in figure 8.
We can see that for small values of c the infection propagates over the susceptible population
leaving a nonzero density of immune individuals. As c is increased a continuous phase
transition to an absorbing state, where there is no spreading of the epidemic, takes place.

3.3. Time-dependent simulation

The spatial patterns and the threshold of the epidemic spreading can be obtained by performing
time-dependent simulations. Initially all sites of the lattice are occupied by susceptible
individuals except one, in the origin (centre) of the lattice, which is occupied by an infected
individual. The stochastic dynamics follows the rules (A) and (B) defined in section 3.1 with a
synchronous updating. The infection starts to be transmitted at time t = 0. We have performed
an analysis similar to that shown in section 2.3 and investigated the time behaviour of the mean
number of infected individuals 〈N〉, the survival probability P, and the mean-square distance of
spreading from the origin 〈R2〉. The log–log plots of these quantities at criticality show a clear
power-law behaviour, associated with critical behaviour, and the dynamic critical exponents
η, δ and z, defined in the relations of equations (9), can be obtained. The estimated exponents
are η = 0.587(13), δ = 0.096(10) and z = 1.767(5). The critical exponent ν‖ was obtained
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Figure 9. Two snapshots of the epidemic with immunization (a = 0) generated from a single
infected individual located at the origin (centre) of a lattice covered by susceptible individuals, for
c = 0.15 (left panel, taken at t = 500) and for c = 0.22 (right panel, taken at t = 1000). The
white, black (red in the electronic version) and grey points represent sites occupied by susceptible,
infected and immune individuals, respectively.

by analysing the behaviour of the derivative D, defined in equation (10), at the critical point.
We have obtained the estimation ν‖ = 1.51(1). These exponents are consistent with the
critical exponents of the dynamic percolation universality class [29] and this is the expected
critical universal behaviour for a general epidemic with immunization [20, 21].

3.4. Patterns of spreading

For high values of the probability b of infection compared to the values of the recovering
probability c, the epidemic spreads leaving a cluster of inactive sites composed of immune
individuals and some groups of individuals which remain susceptible forever. A typical picture
of the lattice in this situation is shown in the left panel of figure 9. The cluster grows with a
front of infected individuals which stay in the border. After a finite time the cluster seems to
assume a limiting shape and spreads to infinity with a nonzero probability. We observe that
different initial seeds lead to different configurations of the spreading of the epidemic, giving
rise to an infinitely many absorbing states. As b is decreased (and c is increased) the threshold
for the spreading of the epidemics is reached. Above the threshold, the epidemic will cease
in a finite time leaving a cluster with just a few number of immune individuals, the rest of the
lattice being covered by susceptible individuals. A picture of the lattice near the threshold of
epidemic spreading is shown in the right panel of figure 9. This almost critical cluster presents
an irregular shape of fractal nature.

Similar critical and supercritical clusters have been obtained from time-dependent
simulations for other spatial-structured stochastic models for an epidemic with immunization
[27, 35] and for a forest-fire [43] model.

3.5. Steady-state simulation

We have considered square lattices with linear size L and periodic boundary conditions. For
each value of L we have performed several independent simulations runs all starting from a
lattice covered with susceptible individuals with the exception of one infected at the centre
of the lattice. The system evolves in time according to the synchronous stochastic dynamics
defined in section 3.1. In principle, any one of the infinitely many absorbing states can be
reached; and, consequently, the number of immune individuals at the steady state varies from
sample to sample. A simulation is finished when the system enters in an absorbing state and
then the number of immune individuals is calculated. The mean value of this quantity, divided
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Figure 10. Density of immune individuals ρ0 as a function of c, for a = 0.0. From top to bottom
(at right): L = 10, 20, 30, 40, 60, 80, 120, 160, 240. The critical value of c for the infinite system
is cc = 0.2200(3) (see table 1).

Figure 11. Log–log plot of ρ0, calculated at the critical value cc = 0.220, for a = 0.0, as a
function of L. Simulations were performed on square lattices of size ranging from L = 10 until
320, and considering periodic boundary conditions.

by the total number of lattice sites L2, is the density ρ0 of immune individuals at the steady
state (for a given lattice size).

The behaviour of ρ0 as a function of c, for different values of L is shown in figure 10. In
the subcritical regime (c above its critical value cc) ρ0 decreases as L is increased and in the
limit L → ∞ it vanishes. In the supercritical regime ρ0 is almost independent of L. We have
assumed that ρ0 is an appropriate order parameter for this transition. For large values of L and
off criticality the behaviour of ρ0 versus c, shown in figure 10, is similar to that obtained from
mean-field approximations (see figure 8).

Assuming the finite size scaling hypothesis [28] we expect that ρ0(�,L), where
� = c − cc, calculated for each value of L, scales at the critical point as, ρ0(0, L) ∼ L−β/ν⊥ ,
where ν⊥ is the critical exponent related to the spatial correlation length. To obtain the ratio
β/ν⊥ we plot log ρ0, calculated at cc = 0.2200(3), versus log L, as shown in figure 11. We
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obtain β/ν⊥ = 0.185(5). Using the result ν⊥ = 4/3 [29] we find the value β = 0.139(4)

which is in agreement with the one for the isotropic percolation, namely β = 5/36.

4. Summary

We have studied a spatial-structured model in which prey and predators individuals reside on
the sites of a lattice and are described by discrete dynamic variables. The system evolves
in time according to a probabilistic cellular automaton which takes into account the Lotka–
Volterra interactions by the use of Markovian local rules. The model exhibits an active phase
where prey and predator coexist without extinction, an absorbing prey phase, and, when the
birth probability of prey vanishes, a phase with infinitely many absorbing states composed
of empty (immune) sites and prey (susceptible). In the last case, it is more appropriate to
refer to the predator–prey cellular automaton as a model for the spreading of an epidemic with
immunization in a population composed of susceptible, infected and immune individuals. The
automaton was studied by dynamic mean-field approximation and by numerical simulations
which allow us to determine the phase boundaries (thresholds) and the critical exponents. We
have localized a transition line that crosses the entire phase diagram. For all sets of parameters
such that the prey birth probability is different from zero, this line separates the active phase,
where prey and predators coexist, and the prey absorbing phase. We have shown that this
transition belongs to the directed percolation universality class. We have also shown that
when the prey birth probability equals zero, there is a crossover to the universality class of the
dynamic percolation.

Patterns of growing clusters with coexistence of prey, predators and empty sites (or,
susceptible, infected and immune individuals), generated by the time-dependent simulations,
in the critical and in the supercritical regimes, were shown and discussed. The present study
provides a detailed description of the thresholds of stable coexistence of the two species (or, the
spreading of an epidemics) in the context of this predator–prey cellular automaton. We remark
that the present model is one of the simplest spatial-structured models which contains the
basic ingredients to describe the coexistence of two competing species and local oscillations.
Once the phase diagram was achieved, other important ecological issues can be investigated.
For example, the relevance of dispersion and explicit movement of individuals in determining
the coexistence of species or the spreading of an epidemic. We expect that the introduction
of these features, in the present stochastic space-structured model, should provide qualitative
theoretical results that can be more realistic.
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